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Abstract Shrimp aquaculture is one of the major food-
producing industries in the world. However, it is being
impacted by several problems including diseases, antibiotic
use, and environmental factors. The extent of the effects of
these problems in the immune system of the shrimp at the
molecular level is just beginning to be understood. Here,
we review the gene expression profile of shrimp in response
to some of these problems using the high-throughput
microarray analysis, including white spot syndrome virus,
yellow head virus, Vibrio spp., peptidoglycan, oxytetracy-
cline, oxolinic acid, salinity, and temperature.
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Introduction

During the past two decades, several high-throughput
methods have been established to understand how environ-
mental conditions affect gene expression. These include
expressed sequence tag (EST) analyses, suppression sub-
tractive hybridization (SSH), differential hybridization,
serial analysis of gene expression, microarray, and two-
dimensional electrophoresis (2-DE). In the field of shrimp
immunology, EST analyses have been used for several
species, including Litopenaeus vannamei, Litopenaeus
stylirostris, Penaeus monodon, Marsupenaeus japonicas,
and Fenneropenaeus chinensis (Rojtinnakorn et al. 2002;
Shen et al. 2004; de Lorgeril et al. 2005; Tassanakajon et al.
2006; Leu et al. 2007; Preechaphol et al. 2007; Pongsom-
boon et al. 2008a). The ESTs are derived from cDNA
library and SSH clones constructed from various tissues,
such as whole postlarvae, hepatopancreas, hemocytes, and
lymphoid organ. Shrimp ESTs provide a first observation to
describing the host differential expression at the transcrip-
tional level at different experimental conditions. Because
the shrimp whole genome has not yet been resolved, large
collections of shrimp ESTs are valuable not only for gene
identification, but also for probes for cDNA microarrays.

Microarrays have been used to investigate gene expres-
sion by white spot syndrome virus (WSSV), which causes
enormous economic damage to the shrimp aquaculture
industry worldwide. Global viral gene expression profiles
have been examined for three white spot syndrome virus
strains (WSSV-Taiwan, WSSV-Thailand, and WSSV-
China) of experimentally infected P. monodon and crayfish
(Cambarus clarkia) (Wang et al. 2003; Tsai et al. 2004;
Marks et al. 2005; Lan et al. 2006). Furthermore, using
viral DNA microarray database obtained from different
experimental treatments, several specific WSSV properties
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have been characterized including latency-related genes,
immediate-early genes, putative promoter motifs, and the
most highly expressed viral gene (Khadijah et al. 2003; Liu
et al. 2005; Marks et al. 2006; Wang et al. 2007).

In aquaculture, microarrays have been used to investi-
gate host physiological modulations, including develop-
ment (Darias et al. 2008; Gahr et al. 2008), dietetics
(Kirchner et al. 2007; Leaver et al. 2008), environmental
sciences (Chou et al. 2008; Steinberg et al. 2008; Ruggeri et
al. 2008), and genetic divergence among populations
(Larsen et al. 2007; Jeukens et al. 2009). In recent years,
there has been an increasing attention on pathogen–host
interactions, particularly on the host immune response
against invaders. Microarray analyses have provided im-
portant insights into the regulation of biodefense mecha-
nisms of aquaculture animals in response to different
stimuli (Matsuyama et al. 2007a, b; Darawiroj et al. 2008;
Djordjevic et al. 2008; Schiøtz et al. 2008; Peatman et al.
2008). Recently, several shrimp microarrays have also been
constructed from studies of different organs and different
shrimp species. Dhar et al. (2003) constructed a low-density
microarray where the glass chips contained 100 clones
obtained from WSSV-infected shrimp hepatopancreas
ESTs. Wang et al. (2006a) constructed an F. chinensis
cDNA microarray obtained from 3,136 cDNA targets form
a cephalothorax cDNA library of normal shrimp and SSH
libraries of WSSV-infected shrimp. The generation of the
first L. vannamei cDNA microarray encompassed 2,469
ESTs from standard cDNA libraries and SSH libraries from
three tissues under different stimulus (Robalino et al. 2007).
The first generation of P. monodon cDNA microarray chips
contained 3,853 individual cDNA fragments originating
from a normal hemocyte cDNA and six SSH libraries (de la
Vega et al. 2007). Pongsomboon et al. (2008b) and Fagutao
et al. (2008) used a cDNA microarray composed of 2,036
ESTs collected from healthy and WSSV-infected hemocyte
cDNA libraries of P. monodon and Marsupenaeus japoni-
cus. Zeng and Lu (2008) demonstrated the gene expression
of WSSV-infected crayfish (Procambarus clarkia) hemo-
cytes using nylon membrane-based P. clarkia cDNA
microarray. Their arrays showed that shrimp gene expres-
sion and immune responses associated with a variety of
experimental conditions including immunostimulations,
stress conditions (hypoxic, hyperthermic, and hypoosmotic
responses), WSSV infection, yellow head virus (YHV)
infection, and Vibrio anguillarum infection (Dhar et al.
2003; Wang et al. 2006; de la Vega et al. 2007; Robalino et
al. 2007; Fagutao et al. 2008; Pongsomboon et al. 2008b;
Robalino et al. 2007; Wang et al. 2008; Wongpanya et al.
2007; Zeng and Lu 2008). Large percentages of the
differentially expressed genes in these reports (47% to
72%) had no significant similarity to any proteins from
other organisms and lack identifiable functional domains.

These results suggest that shrimp possesses many immune-
related genes of unknown function. In the following
sections, we review six categories of shrimp immune
responses against different stimuli as revealed by micro-
array analyses. Three of these categories are about shrimp
immune modulations caused by three shrimp major
infectious pathogens (WSSV, YHV, and V. anguillarum),
while the other three are about the host immune regulation
in response to immunostimulation, antibiotic treatment and
environmental stress.

Immune-Related Gene Expression Following WSSV
Infection

White spot syndrome (WSS) causes enormous economic
damage to the shrimp aquaculture industry worldwide. The
causative pathogen of WSS is white spot syndrome virus
(WSSV), which is a large dsDNA virus. It is thus essential
to elucidate the interactions between WSSV and host, both
the host immune response and the WSSV pathogenesis.
Some recent studies have investigated the molecular
mechanisms in WSSV-infected shrimp. Leu et al. (2007)
performed a comparative EST analysis of differentially
expressed genes in normal and WSSV-infected Penaeus
monodon postlarvae. This study suggested that WSSV
infection modulates the expressions of various kinds of
genes involved in the immune response such as genes
involved in oxidative activity, protein synthesis, energy
metabolism, glycolytic pathway, and calcium ion homeo-
stasis. To identify host genes that are involved in WSSV
resistance, several research groups used SSH to identify
differentially responsive genes in WSSV-resistant L. van-
namei and M. japonicus (He et al. 2005; Pan et al. 2005;
Zhao et al. 2007). Most strongly expressed genes in
subtractive libraries function in antiviral activity, proph-
enoloxidase (proPO) system, lysosomal proteolytic system,
non-self recognition system, clotting system, apoptosis and
antioxidant enzyme. Furthermore, based on the protein
expression profiles of WSSV-infected and WSSV-free
white shrimp using 2-DE, several differentially expressed
proteins were identified. These proteins are involved in
mitochondrial pathways, energy production, calcium ho-
meostasis, nucleic acid synthesis, glycolysis/gluconeogene-
sis pathways, and other cellular processes (Wang et al.
2007).

The microarray technique was also applied to discover
differentially expressed host genes in response to WSSV
infection (Dhar et al. 2003; Wang et al. 2006, 2008;
Robalino et al. 2007; Zeng and Lu 2008). However, the
shrimps used in these studies were all WSSV susceptible,
while the challenged agent was infectious WSSV. There-
fore, the responsive gene profile may not only reflect the
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host immune response, but also the WSSV pathogenesis
and host physiological stress response. At present, the
genes involved in the host immune response and WSSV
pathogenesis, as well as the coordinated interaction be-
tween these sets of genes remain unclear. Nevertheless,
these studies identified differentially expressed global host
responses after WSSV infection.

Robalino et al. (2007) established tissue-specific tran-
scriptional profiles of four tissues (hemocytes, hepatopan-
creas, gills, and muscle) of WSSV-infected L. vannamei by
using a microarray platform. A cluster analysis indicated
that the host gene response patterns of hemocytes and gills
were highly similar, while those of two other tissues were
different. The similar gene response patterns of hemocytes
and gills is thought to be due to the fact that hemocytes and
gills are derived from ectodermal and mesodermal tissues,
which are major targets of WSSV, while tissues of
endodermal origin are more resistant to WSSV infection
(Chang et al. 1996; Wang et al. 1999). This apparently
prompted the authors to choose the hepatopancreas as the
best organ for examining the immune response after WSSV
infection. The hepatopancreas was collected from control
and experimental groups 40 h after injecting a lethal dose of
WSSV, and total RNA was extracted. Although the authors
did not mention the health status of the WSSV-infected
shrimp, the WSSV viral gene expression profile showed
that several WSSV structural protein genes such as wsv
421, wsv311, wsv465, and wsv077 corresponding to vp28,
vp26, vp136B, and vp36A and very late gene, wsv230 have
already been detected. This suggests that the shrimp were at
the late stage of WSSV replication, but not at the moribund
stage (Tsai et al. 2004; Wang et al. 2007). A total of 64
differentially expressed host genes were identified while
38% are novel genes without known function. WSSV
infection up-regulated the genes for anti-lipopolysaccharide
factor, cathepsin-like cysteine protease and lysozyme, and
anti-apoptotic-related gene (platelet-derived growth factor).
Microarray analyses revealed several immune-related genes
that were up-regulated in response to WSSV infection in
crayfish and Chinese shrimp (Dhar et al. 2003; Zeng and
Lu 2008; Wang et al. 2006, 2008). These include the genes
for lipopolysaccharide-β-1,3 glucan-binding protein,
chaperone-related genes (chaperonin, heat shock protein
70, heat shock protein 90, calreticulin precursor, and
endoplasmin precursor), and three kinds of serine protease
inhibitor, which can function as defense components.

These microarray results, together with the results of
other shrimp gene studies, indicated not only the impor-
tance of innate immunity for defense against WSSV, but
also the novel antiviral functions of known and unknown
proteins in innate immunity. For example, shrimp anti-
lipopolysaccharide factor is a well-known antimicrobial
peptide against bacteria and fungi, such as Vibrio species

and Fusarium oxysporum (Somboonwiwat et al. 2005; de la
Vega et al. 2008). Liu et al. (2006b) found that crayfish
anti-lipopolysaccharide factor from crayfish (Pacifastacus
leniusculus) can interfere with WSSV replication in vitro
and in vivo. Therefore, anti-lipopolysaccharide factor may
also have an antiviral potential against WSSV in penaeid
shrimp.

Microarrays analyses have shown that, while WSSV
triggered the expressions of some host genes, it repressed
other host genes. Some of these genes function in anti-
oxidative stress system (glutathione-S-transferase and
thioredoxin-related genes), JAK/STAT pathway (signal
transducer and activator of transcription), energy metabo-
lism (arginine kinase), and glycolysis pathway (phospho-
pyruvate hydratase) (Wang et al. 2006, 2008; Robalino et
al. 2007; Zeng and Lu 2008). Insights into anti-oxidative
stress system showed that WSSV can modulate these host
defense mechanisms. Free radicals, also called reactive
oxygen species (ROS), are involved in immune responses
against bacteria, fungi, and viruses in crustaceans (Munoz
et al. 2000). In order to prevent cell harm caused by ROS
accumulation, the anti-oxidative system must associate well
with the oxidative system during the defense process
(Mohankumar and Ramasamy 2006). The anti-oxidative
stress system has been shown to be down-regulated after
WSSV infection, leading to a significant increase of
oxidative stress in infected shrimp (Mohankumar and
Ramasamy 2006; Mathew et al. 2007).

The JAK/STAT signaling pathway has been shown to be
involved in immune- and stress-induced responses in
various organisms (Loo and Gale 2007; Pastor-Pareja et
al. 2008). In the lymphoid organ of WSSV-infected shrimp,
the expression of STAT was decreased, but its activation
(i.e., phosphorylation) was increased (Chen et al. 2008b).
This suggests that WSSV uses STAT to enhance its
immediate early gene expression in infected shrimps
(Liu et al. 2007b). Together, these results indicated that
WSSV can benefit from the host JAK/STAT immune
response. This is a good example of how WSSV can
exploit the host immune response. In addition, this may
also be the reason why WSSV replication can be triggered
in shrimp under environmental stress (reviewed below).

Immune-Related Gene Expression Following YHV
Infection

Yellow head virus (YHV), the pathogen of yellow head
disease syndrome, is an enveloped, rod-shaped virus contain-
ing positive-sense stranded RNA genome (Rattanarojpong et
al. 2007). Like WSSV, YHV also cause serious mortalities
and economical loss in farmed penaeid shrimp. In 2002,
YHV was classified as a species under a new family called
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Roniviridae (genus Okavirus) within the order Nidovirales
(Sittidilokratna et al. 2002; Walker et al. 2005). Although
YHV have been considered as a highly virulent shrimp
pathogen, the global host gene/protein responses involved in
the host–YHV interaction are still limited and poorly
described. So far, there is one transcriptomic study and two
proteomic studies to clarify the differentially expressed host
responses following YHV infection using microarray and 2-
DE approaches, respectively (Rattanarojpong et al. 2007;
Bourchookarn et al. 2008; Pongsomboon et al. 2008b).
Because of the limitation of host protein abundance, few
host protein spots (18 to 33 spots) with significant alterations
after YHV infection can be identified and sequenced. On the
other hand, fluorescent cDNA probes prepared form the
higher abundance of mRNA can increase the sensitivity of
detection using microarray platform.

Pongsomboon et al. (2008b) investigated responsive
genes in P. mondon hemocytes from YHV-infected and
control shrimp at different times (0.25, 6, 24, and 48 hour
post infection (hpi). To exclude elements that did not have
at least a twofold change in at least one time course after
injection, 105 YHV responsive genes were filtered from
2,028 analyzed gene probes spotted on microarray chip and
revealed five differentially expressed transcription patterns
(cluster I–V). Here, over ten responsive genes were shrimp
immune-related genes, such as crustin-like peptide, penaeidin,
hemocyte kazal-type proteinase inhibitor, transgulaminase,
anti-lipopolysaccharide factor, WAP domain-contained pro-
tein, C-type lectin, prophenoloxidase, and cathepsin L-like
cysteine peptidase. In cluster I, the most responsive host genes
at 48 hpi were ribosomal proteins and unknown proteins.
There were two immune-related genes, ferritin and carbox-
ylesterase, which are involved in detoxification in this
cluster. In addition, immune-related genes function in
proPO cascade, clotting system, antimicrobial peptides,
and pathogen recognition were significantly down-
regulated at 24 and 48 hpi and grouped into cluster IV.
The down-regulation during the late infection stages may
have been caused by YHV pathogenesis due to YHV-
infected shrimp. Based on this reason, it has been
hypothesized that genes up-regulated at the late infection
stage may be involved in YHV pathogenesis or host
physiological stress response.

Interestingly, five genes grouped into cluster V showed
relatively consistent high expression throughout the YHV
infection, although the expression patterns in cluster V were
slightly decreasing compared with the earlier stage. Just one
of these genes was a known protein, cathepsin L-like
cysteine peptidase, which is involved in apoptosis, and
others were hypothetical proteins and unknown proteins. In
this study, again, 50 of 105 YHV responsive genes (around
47%) were also without any homolog with known gene/
protein.

Immune-Related Gene Expression Following Vibrio
Infection

In addition to viral diseases, bacterial diseases such as
vibriosis are also a concern of the shrimp aquaculture
industry. Vibriosis causes high mortalities and serious
economic damage in both shrimp hatcheries and grow-out
ponds. The major causative agents of vibriosis are Vibrio
spp., including Vibrio campbellii, V. anguillarum, Vibrio
harveyi, Vibrio alginolyticus, and Vibrio parahaemolyticus
(Lightner 1988; Saulnier et al. 2000; Somboonwiwat et al.
2006).

In 2006, George and colleagues found that after
treatment with V. harveyi, P. monodon showed higher
resistance to WSSV infection. However, a prior non-lethal
WSSV infection can increase the susceptibility to V.
campbellii infection in L. vannamei due to rapid Vibrio
multiplication (Phuoc et al. 2008). In this dual infection, the
V. campbellii load was significantly higher, but no WSSV
load, rather than single bacterial infection. These studies
suggest that shrimp have similar immune responses and
coordinate their responses to these two pathogens (Phuoc et
al. 2008; Wang et al. 2008).

Wang et al. (2006) used a 3,136-gene microarray to
compare the transcriptomes of Chinese shrimp (F. chinen-
sis) challenged with WSSV and heat-killed V. anguillarum
at 6 and 12 hpi. Interestingly, 155 genes, of which 77% had
unknown functions, were differentially expressed at 6 hpi in
response to the inactivated Vibrio but not to WSSV, which
shows that that the responsive gene profile was caused by
the host immune response rather than pathogenesis. The
known genes included proteases, protease inhibitors,
chaperones, nucleic acid-binding proteins, and transporters.
Lysosome-related genes (beta-hexosaminidase, CUB-serine
protease, and saposin-related protein) were up-regulated
two- to tenfold by inactivated Vibrio but only at 6 hpi. A
similar lysosome-related immune response was observed in
V. harveyi-infected P. monodon by using differential display
PCR (Somboonwiwat et al. 2006). This suggests that
different immune modulation responses can be triggered
by different pathogens. Otherwise, compared with inacti-
vated Vibrio challenged, infectious WSSV may modulate
the expression of host cell genes to enhance or inhibit some
host responses.

Furthermore, 188 genes, of which 67% had unknown
functions, were differentially expressed in response to both
WSSV and inactivated Vibrio. Just 1 of 62 known genes in
this group was down-regulated at 6 and 12 h after
inactivated Vibrio challenge. On the other hand, although
62 known genes were all up-regulated at 6 h post WSSV
infection, significant down-regulation or suppression was
investigated at 12 h post WSSV infection. This may be
caused by WSSV pathogenesis. Therefore, it is important to
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consider the relationship between the host immune
responses and the pathogenesis of invaders. Even so, the
up-regulated genes at 6 hpi in this group appear to be
involved in the shrimp defense mechanism against both
pathogens, whereas WSSV can suppress these responses at
12 h post infection. Another interesting observation was
that hemocyanin expression was significantly suppressed in
WSSV-treated shrimp, whereas it was up-regulated in
inactivated Vibrio-treated shrimp. This clearly shows that
hemocyanin, an antiviral, antibacterial, and antifungal
protein (Zhang et al. 2004; Pan et al. 2005; Lei et al.
2008), is also involved in the defense against inactivated
Vibrio. Wang et al. (2006a) also observed repression of
hemocyanin in WSSV-infected Chinese shrimp (at 6 hpi
and moribund satiations) by cDNA microarray. Using SSH,
Pan et al. (2005) found that the antiviral activity of WSSV-
resistant shrimp may be due to strong expression of
hemocyanin in the hepatopancreas. Therefore, WSSV may
suppress the expression of hemocyanin in order to complete
its viral replication in WSSV-susceptible shrimp.

Immune-Related Gene Expression
Following Immunostimulation

Immunostimulants, agents which can increase the resistance
of the host by enhancing the nonspecific immune response,
are comprised of several main groups: live bacteria, killed
bacterial cells, β-1,3 glucans, peptidoglycans (PG), lip-
opolysaccharides, and selected plant extracts (Sakai 1999;
Smith et al. 2003; Montero-Rocha et al. 2006). Several
studies have reported positive consequences of immunos-
timulation on shrimp disease resistant capacities, e.g.,
increasing phenoloxidase activity, antibacterial activity,
phagocytic activity, clearance efficiency against pathogens,
and antioxidant activity (Song et al. 1997; Huang and Song
1999; Takahashi et al. 2000; Campa-Córdova et al. 2002;
Rattanachai et al. 2005; Montero-Rocha et al. 2006;
Okumura 2007; Bacano Maningas et al. 2008; Fagutao et
al. 2008; Tseng et al. 2008).

The first study about the gene expression profile of
shrimp following immunostimulation using microarray
approach was reported in 2008 (Fagutao et al. 2008). The
immunostimulant and shrimp organ used in this study were
PG and hemocytes of kuruma shrimp (M. japonicus),
respectively. The microarray analysis showed that PG
administration up-regulated the expression of immune-
related genes. These differentially expressed immune-
related genes function in antibacterial responses, clotting
system, prophenoloxidase (proPO) cascade and wound
healing. The significant shrimp immune system triggered
by PG immunostimulation is the proPO cascade of humoral
responses, and six responsive genes are involved in this

cascade as detected by microarray including prophenolox-
idase and Kazal-type proteinase inhibitor. Other up-
regulated genes have roles in innate immunity, including
single WAP domain-containing protein, crustin, lysozyme,
transglutaminase and alpha 2-macroglobulin. Other studies
found that PG had similar effects on shrimp immune-related
genes (Rattanachai et al. 2004; 2005; Lin et al. 2007).
Based on these studies, the humoral response is an
important innate immune mechanism in shrimp, which is
triggered immediately after non-self component stimula-
tion. Interestingly, the strong expression of genes related to
the proPO cascade was observed at 1 day, but not at 7 or
14 days, post-PG administration. The genes involved in
other immune responses also showed similar phenomenon.
The short-lived primary immune response of shrimp
provides further evidence that specific memory in shrimp
immunity is non-existent. As in the shrimp transcriptomic
assays, approximately 48% differentially expressed genes
were unknown genes.

Immune-Related Gene Expression Following Antibiotic
Treatment

Antibiotics, biologically or synthetically produced substan-
ces that display antagonistic activity against microorgan-
isms, are used in shrimp culture for both therapeutic and
prophylactic purpose (Tendencia and Peña 2001). Two of
the most common antibiotics used in shrimp are oxytetra-
cycline and oxolinic acid. Oxytetracycline (OTC) is a
broad-spectrum antibiotic active against a wide variety of
bacterial species including Gram-negative and Gram-
positive aerobic and anaerobic bacteria and is perhaps one
of the most widely used therapeutics in aquaculture because
of its effectiveness, relative safety, low rate of accumulation
in edible tissue, and short tissue elimination time (Bray et
al. 2006). OTC is also one of the only four antimicrobial
agents approved by the US Food and Drug Administration
for use in food fish and only one such drug approved for
use in invertebrates (Nolan et al. 2007). It is used in the
treatment of various bacterial diseases of aquatic animals
and in farm-raised shrimp such as vibriosis and necrotizing
hepatopancreatitis infections (Reed et al. 2004). On the
other hand, oxolinic acid (OA), a quinolone, is an antibiotic
effective against a variety of Gram-negative bacteria and
works primarily by inhibiting the synthesis of bacterial
DNA (Pianotti et al. 1968). It is mainly used in shrimp
farms in Asia primarily as a treatment against vibriosis
(Gräslund and Bengtssona 2001; Tendencia and Peña 2001;
Uno 2004).

Shrimp lymphoid organ is reported to be a primary site
of bacterial accumulation and bacteriostasis (Burgents et al.
2005; van de Braak et al. 2002) and one of the organs that
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plays a role in the elimination of viral particles and other
infectious agents (Hasson et al. 1999; Duangsuwan et al.
2008). We previously showed that the expressions of genes
in the shrimp lymphoid organ including those that are
involved in immune response were altered after the
administration of antibiotics (Fagutao et al. 2008). However,
the effects OA and OTC are slightly different from each
other, i.e., there were far more differentially expressed genes
in the lymphoid organ of OA-treated samples, particularly
down-regulated genes, than in the lymphoid organ of OTC-
treated samples.

Immune-related genes that were significantly down-
regulated by OA and OTC were penaeidin, proPO, clotting
protein, profiling, and whey acidic protein. Penaedins, first
isolated in pacific white shrimp, Litopenaeus vannamei,
display antimicrobial activity against fungi and bacteria
with a predominant activity against Gram-positive bacteria
(Destoumieux et al. 1997) and have been proposed to be
linked the survivability of shrimp (de Lorgeril et al. 2008).
ProPO, which is an essential component in melanin
synthesis, was shown to have an antibacterial role in
shrimp (Amparyup et al. 2009; Liu et al. 2007a).
Importantly, both the penaeidins and ProPO are mainly
synthesized in the hemocytes (Destoumieux et al. 2000;
Hose et al. 1987). Shrimp lymphoid organ was found to
contain many hemocytes (van de Braak et al. 2002), and
lymphoid organ cells also share similar characteristics to
semi-granular and, in particular, large granular hemocytes
with phenoloxidase activity (Anggraeni and Owens 2000).
Clotting protein is strongly expressed in the lymphoid
organ in shrimp and its absence renders shrimp susceptible
to viral and bacterial pathogens (Maningas et al. 2008). The
lymphoid organ was reported to be one of the major tissues
producing this gene (Yeh et al. 2007). Profilin is a protein
important for regulating actin polymerization essential for
many cellular processes, and in shrimp, it was found to be
up-regulated after Vibrio challenge (Somboonwiwat et al.
2006). On the other hand, genes having whey acidic protein
(WAP) domains were shown to possess antimicrobial
properties (Jia et al. 2008). It is expressed at a higher level
in virus-resistant shrimp and is highly up-regulated during
early phase of WSSV infection (Chen et al. 2008a, b).

Immune-Related Gene Expression
Following Environmental Stress

WSSV pathogenesis is believed to be closely related to the
host stress-induced response (via the JAK/STAT pathway).
Therefore, stress should decrease the ability of shrimp to
defend themselves against pathogens. Furthermore, viral
and bacterial pathogenesis in shrimp reflects the correlation
of environmental stresses and immunity. For examples, L.

vannamei had lower resistance to V. alginolyticus under
nitrite stress and higher WSSV resistance under high
temperature (Tseng and Chen 2004; Granja et al. 2006), P.
monodon showed higher susceptibility to Photobacterium
damselae subsp. damselae following a change in salinity
(Wang et al. 2006), and Taura syndrome virus-infected
shrimp showed a lower tolerance for a decrease in salinity
(Lotz et al. 2005).

De la Vega et al. (2007) examined the stressed-induced
gene expression profile in P. monodon under hypoxic,
hyperthermic, and hypoosmotic conditions by utilizing
cDNA technology. Of the 3,853 probes on the chip, 145
were responsive to at least one stress treatment and 83%
were unknown molecules. Generally, hemocyanin showed
significant differential expression in response to osmotic
stress and thermal stress, but not hypoxic stress. In shrimp,
following a long-time recovery period after hyperosmotic
stress (wherein the salinity was reduced from 35 to 10 ppt),
down-regulation of several different hemocyanin clones on
a chip were identified, whereas up-regulated expression
levels were observed when stress immediately follows. In
addition, hemocyanin had higher expression level after
higher water temperature treatment (35°C) following a
long-time recovery period. Because of antimicrobial func-
tion (against virus, bacteria, and fungi), the up-regulation of
hemocyanin by elevated temperature appears to decrease
the susceptibility of shrimp after changing the salinity (Bray
et al. 1994; Lotz et al. 2005; Liu et al. 2006a; Wang and
Chen 2006; Granja et al. 2003; 2006; García-Carreño et al.
2008).

Hypoxic stress, causing changes in the expression of
several immune-related genes, was observed, such as the
up-regulation of transglutaminase and suppression of three
WAP family proteins (crustin and protease inhibitors) and
Kunitz domain-containing protease inhibitors. As described
previously, the WAP domain contains protease inhibitors
that play an important role in the host defense system
against invasion of shrimp pathogens (Zhang et al. 2007;
Amparyup et al. 2008; Chen et al. 2008a, b; Smith et al.
2008). Because hypoxic stress suppresses WAP family
proteins, it should make shrimp more susceptible to
pathogens.

As shown by de la Vega et al. (2007), shrimp physical
condition, the immune response, and environmental stress
are closely related.

Conclusion

Microarray has been an effective tool in elucidating and
understanding the mechanisms of shrimp responses to viral
and bacterial infection, antibiotic treatment, and even
environmental stress at the molecular level. It is therefore
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clear that the technique will become an indispensable tool in
the study of shrimp in both the short- and long-term future
and should reveal breakthrough information that could lead
to novel applications for the continuous development of
shrimp culture and the shrimp industry in general.
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