Development and application of the fisheries vulnerability assessment tool (Fish Vool) to tuna and sardine sectors in the Philippines

Melchor R. Jacinto, Al Jayson G. Songcuan, Graceous Von Yip, Mudjekeewis D. Santos

1. Introduction

Climate change, also referred to as global warming, is the increase in global atmospheric temperature and high variability in frequency and intensity of extreme weather disturbances, which poses threat to society, biodiversity, economy, and food security (Aagaard et al., 2005; IPCC, 2001). Philippine development and progress are critically related to the adaptive capacity toward the emerging effects of climate change. The fisheries sector contributes to the country’s economy by generating approximately 2.2% (770.3 billion pesos) of gross domestic product and 452 million dollars of export earnings (Bureau of Fisheries and Aquatic Resources (BFAR), 2010), as well as providing sources of livelihood to rural areas and coastal communities. However, this sector may be highly vulnerable to the impacts of climate change (Burke et al., 2012; Hughes et al., 2012). Harmeling (2011) ranked the Philippines as the seventh most vulnerable country to climate change on the basis of long-term trends of exposure and extreme weather events from 1990 to 2009. Impacts contributing to the vulnerability of fisheries include direct and indirect effects of physical and chemical factors, such as temperature, winds, vertical mixing, salinity, oxygen, and pH (Brandt, 2010).

Accordingly, a National Framework Strategy on Climate Change was formed to aid in adaptive capacity building of communities and optimization of mitigation opportunities toward sustainable development. The Philippine climate change policy provides guidelines for the development of adaptation strategies, which can be accomplished by conducting vulnerability assessments (VAs), among others (e.g., Allison et al., 2009; Cochrane et al., 2009; Mamanuag et al., 2013; Santos et al., 2011). VAs, especially for fisheries and aquaculture, provide a better way to understand the interactions among the natural system, pressures, and threats, which serves as a basis for the development of climate change adaptation (CCA) options (Mamanuag et al., 2013).

Several climate change and VA studies (Jose and Cruz, 1999; Badjeck et al., 2010; Sajise et al., 2012; Mamanuag et al., 2013) have been conducted in the Philippines, which also included the development of a VA tool. However, most of these vulnerability tools were designed to evaluate the vulnerability of specific subjects only. Mamanuag et al. (2013) designed a framework for the VA of coastal fisheries ecosystems (Tool for Understanding Resilience of Fisheries, VA-TURF). VA-TURF was used to assess the vulnerability of the coastal fisheries ecosystems in the tropics to climate change. This tool was demonstrated in all coastal barangays of two island municipalities located along the Verde Island Passage, which has the world’s highest marine shore fish biodiversity. However, VA-TURF is limited to fisheries associated with nearshore habitats, uses the coastal or fishing village (barangay) as the spatial unit, and lacks commercial and sectoral levels of assessment.